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A METHOD FOR PREDICTING UNSTEADY POTENTIAL 
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SUMMARY 
A new model is presented for the calculation of the incompressible, inviscid flow around an arbitrary 
aerofoil undergoing unsteady motion. The technique was developed from the steady flow algorithm of 
Leishman and Galbraith' in which use was made of a linear distribution of panel vorticity. The procedure 
is in the same class as that of Basu and Hancock' but, because of the particular approach to the manner 
of specifying the shed vorticity, only a set of linear simultaneous equations needs be solved, unlike the 
method of Reference 2, complicated by the necessary solution of a quadratic. 

A brief history of unsteady flow modelling is given in the introduction, followed by the mathematical 
details of the current method. Results are presented and discussed for a number of cases which clearly 
illustrate relevant characteristics of unsteady flow. 
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INTRODUCTION 

For some time, aerodynamicists have recognized that unsteady flow over lifting bodies can 
produce beneficial effects, e.g. the phenomenon of stall delay,3 and this has encouraged both 
theoretical and experimental studies, with the aim of improving the performance of turbo- 
machinery, helicopter rotors and wind turbines, etc. 

Among the first unsteady potential theories were those developed by von Karman and Sears4 
and Theodorsen' who considered a thin flat plate executing small amplitude, simple harmonic 
motions. Solutions for these linear problems can be expressed in terms of combinations of 
standard Bessel functions with argument k (the reduced frequency of oscillation). Flat plate 
solutions for transient motions were developed by Wagner6 and Ki i s~ne r ,~  but again second 
order effects were omitted. Thickness effects have been considered for small amplitude oscillations 
by Kiissner,8 van de Vooren and van de Ve19 and Hewson-Brown." These, however, were 
based on conformal mapping techniques and were limited to particular aerofil geometries. 

In recent years, the availability of greater computational power has encouraged the development 
of numerical methods for the assessment of unsteady flows. The most fundamental was developed 
by Giesing" and is based on the steady model of Hess and Smith.12 This general, non-linear, 
potential flow method was applied step by step in time along the aerofoil flight path, starting 
from an initial position and orientation, and the non-linear rolled up wake pattern evolved 
naturally in the solution. Basu and HancockZ adapted and simplified Giesing's method and 
applied it to a number of different cases which illustrate the characteristics of unsteady flow. 
The Kutta condition used was the specification of zero loading across the trailing edge rather 
than smooth outflow, as included in Giesing's" model. Basu and Hancock argued, however, 
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that ideally both conditions could be satisfied if, as postulated by Maskell,13 the shed vorticity 
left the trailing-edge parallel to one or other of the surfaces, depending on the sign. 

The model presented in this paper is based on the steady flow algorithm of Leishman and 
Galbraith' and makes use of a linear distribution of panel vorticity which is piecewise continuous 
at the panel corners. In the steady case, the system of linear simultaneous equations may be 
reduced to 

N + l  

j =  1 
U;fii + Ai jy j  = 0, i = 1,2,3,. . . , N 

where the summation term is the induced normal velocity due to the vortex sheet. The condition 
of zero loading across the trailing edge gives 

Y l  + Y N + l = O  

The potential formulation was seen as a first step towards the incorporation of viscous effects 
so that a more accurate model of trailing-edge dynamic stall can be obtained. 

THEORETICAL DESCRIPTION OF THE MODEL 

The unsteady flow problem is solved at  successive intervals of time starting with the steady 
solution at  t = 0. At time t ,  the panel and shed vortices are as illustrated in Figure 1. The aerofoil 
is represented by N panels, from upper to lower trailing-edge, across which there is a linear 
distribution of vorticity and the total circulation around the contour is T,, where Tm = Jcr,ds. 
The vorticity shed at earlier times is represented by discrete vortices which convect down stream 
according to the induced velocity pertaining to each. 

The shed vorticity at time t, manifests itself as an extra panel, attached to the trailing-edge 
of length A,, inclination 0, and a constant strength which is specified by making use of Helmholtz's 
theorem1* of continuity of vorticity. This is related to the change in aerofoil circulation, thus 

Am(Yl + Y N +  1 )  = T m -  1 - rm 
At time t, therefore there are N + 3 unknowns, i.e. N + 1 values of vorticity, 0, and Am7 but 

To obtain a solution, 0, and A, have to be obtained by iteration from an initial guess. 
only N equations of zero normal flow, and one equation specifying the shed vorticity. 

WAKE ELEMENT 

yN+l  

Figure 1. Unsteady model at time t ,  
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The N conditions of zero normal flow, applied at  the panel mid-points (control points), can 
be reduced to 

where the relevant components are due to the free stream, the bound vortex sheet, the wake 
vortices, the extra trailing-edge panel and the moving boundary. The condition of zero loading 
across the trailing-edge is obtained from the unsteady Bernoulli equation: 

i.e. 

Once A, and 0, have been assumed, a solution is obtained by solving the N + 1 linear 
simultaneous equations for the vorticity values y1 -+ y N +  using the largest pivotal divisor elimi- 
nation technique. The induced velocity at the control point of the extra trailing-edge panel may 
then be calculated and a more accurate value of Om obtained by ensuring that the shed vorticity 
leaves the trailing-edge along the local streamline, i.e. 

A new value of Am is obtained by ensuring that the condition of zero loading is satisfied 

t ( ~  i+ 1 - y:)(trn - t m -  1) = ( ~ 1 +  Y N +  l ) A m  

i.e. 

A m  = ! f ( y N +  1 - yl)(trn - t m -  1) 

The above procedure is repeated until 0, and A, converge. 
The unsteady pressure coefkient follows directly from the Bernoulli equation for a moving 

co-ordinate system; 

v,z y2 2 a@ 
P uz, u', uz,at 

c =I+------ 

The potential function is approximated by integrating the velocity field, as viewed in the moving 
frame, from upstream of the aerofoil to the leading edge and then around the surface. 

One the calculation at  time t ,  has converged, the procedure is then set up for time 
tm+ 1. The wake vortices are convected to their new positions, determined by the induced velo- 
city at their centres and the extra trailing-edge panel is located as a point vortex in the wake thus: 

x v  = x c w  + U w m ( t m  + 1 - t m )  

~v = ~ c w  + V w m ( t m +  1 - t m )  

Normally the aerofoil would also be rotated to its new position at time t,+ 1; however, for the 
present model, the stream is rotated along with any wake vortices and upstream reference point, so 
that the influence co-efficients due to the bound vortex sheet need only be calculated once at the 
start and thereafter remain unchanged. 
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The above method has been applied to a number of unsteady flows, e.g. (i) a step change in 
incidence, (ii) sinusoidal oscillations and (iii) ramp motions. 

(i) Step change in incidence (0-5") 

The above method was employed to consider the NACA 0012 aerofoil undergoing a sudden 
change in incidence from 0" to 5". This motion represents the particular case of the time-dependent 
built-up in lift as well as the phenomenon of the starting vortex. 

The solution was obtained with short time intervals of 0.01 for 0 < AtU, /c  < 0.3, intervals of 
0.05 for 0.3 < A t U , / c  <0,5, 0 1  for 0 5  < A t U m / c < 2 . 0  and finally intervals of 0 2  for 
2.0 < AtU, /c  < 200. Inherent in this problem is an initial transient value of lift due to the 
instantaneous change in aerofoil angle of attack; but no account has been taken of this, and the 
solution originates when the lift returns to a low value. Figure 2(a) illustrates the results obtained 
for the built-up in pressure on the NACA 0012 aerofoil. The evident built-up to the steady state 
condition is further highlighted in Figure 2(b), which illustrates the behaviour of the time 
dependent lift, i.e. very rapid increase over a short period followed by a more gradual increase 
towards the steady-state value. Figure 2(c) shows how the starting vortex comes off the trailing- 
edge, convects downstream and rolls up in the characteristic way. Although this is not a true 
representation of that which actually happens, i.e. the vortex originating at the trailing edge, its 
subsequent development is good. 

(a) PRESSURE BUILD UP Ibl BEHAVIOUR OF TIME DEPENDENT LIFT 

t u 4 c a o  .:* - ..................... 
tU-/c = I 0.0 .=--- . . . . . . . . . .  .... 

.... ..... ..).I: ... ..... >.. . .  
.............. 

N Lc 

Figure 2. Results obtained following a step change in incidence from 0-5" using the NACA 0012 aerofoil 
I c )  WAKE VORTEX CONFIGURATIONS 
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(a ) BEHAVIOUR OF TIME DEPENDENT 
LIFT; 0 = 0,573O Sin 20 t ABOUT e .  

_.-- PRESENT METHOD 

--- BASU AND HANCOCK'' 
----- LlNEARlSED THEORY 

- BASU AND HANCOCK~ 

e=0,573°S~n 20t ABOUT LEADING EDGE OF NACA 0012 
AEROFOIL 

6=0,573OSin 20t ABOUT LEADING EDGE OF 8.L% 
SYMMETRICAL VON MISES AEROFOIL' 

Vy= 0.3105COS 17t FOR NACA 0015 AEROFOIL 

( b )  WAKE VORTEX CONFIGURATIONS 

Figure 3. Results obtained from high frequency calculations 

(ii) Sinusoidal oscillations 

Again using the NACA 0012 aerofoil a solution was obtained for sinusoidal oscillations about 
the leading edge at a reduced frequency of oc/2U, = 10, a mean angle of 0" and amplitude 0.573" 
using a time step AtU, /c  = 0.03927 from zero to a time tU,/c = 1.88496. 

Figure 3(a) illustrates the behaviour of the lift after the initial transients had faded and the 
response was repeatable. The very large values of this parameter were due to the high oscillation 
frequency, not unlike that encountered during aerofoil 'flutter'. However, not only is there a 
magnification of the load over the steady case, but a large lag exists of more than 180" as is shown 
by the initially decreasing lift values. This may be attributed to the large rates of change of the 
potential as well as the above mentioned motion effect. The lift variations attributable to the Basu 
and Hancock model, to an earlier linearized model" by the same authors, and to the standard 
linearized solution are also illustrated. 

At high frequencies a very strong vortex sheet is shed from the trailing edge, as can be seen from 
the highly deformed wake pattern shown in Figure 3b. Also shown are the resulting wakes of 
similar tests carried out by both Basu and Hancock' and Giesing," which further illustrate the 
highly non-linear nature of the problem. 

Other sinusoidal tests of particular interest are low frequency, large mean angle and amplitude 
oscillations about the 1/4 chord which are typical of helicopter rotor motions. 

Figure 4(a) illustrates some recent results obtained from experimenti6 and theory for a test 
carried out on a NACA 23012 aerofoil at a reduced frequency of0.2, an amplitude of 6" and a mean 
angle of 10". The Reynolds number and free-stream Mach number of the test were 1.027 x lo6 and 
0076, respectively, and the data were averaged over 10 cycles. The theoretical computation was 
carried out using a time step AtU, /c  = 0.3141 from zero to a time tU , / c  = 31-41 which 
corresponds to two complete cycles, the second of which is shown. Although there appears to be 
poor agreement between the two results, this may be attributed to the relatively low Reynolds 
number at which the experiment was carried out. As may be seen from Figure 4(b)," this 
particular aerofoil exhibits a marked variation of cL with Reynold's number. Taking account of this 
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Figure 4. Comparison of results obtained from a low frequency sub-stall test on the NACA 23012 aerofoil 

variation, the results presented in Figure 4(a) are very encouraging in that the experimental lift 
loop has been reproduced theoretically as has the relative orientation to the static 'line, both 
phenomenon being due to the motion of the aerofoil and the time rate of change of the potential. 
The curvature of the static C ,  vs 01 curve is due to relatively large negative profile drags at  the higher 
angles of attack. 

The above comparison illustrates how the unsteady potential model reproduces the 
characteristic lift behaviour when viscous effects are not of first order in magnitude; however, when 
the aerofoil motion induces the classic effects of dynamic stall then few recognizable features can be 
reproduced. Figure 5 illustrates this with results obtained from a test carried out on the same 
aerofoil at a reduced frequency of 02,  an amplitude of lo" and a mean angle of 13". The 
experimental Reynolds number and free-stream Mach number were 1-036 x lo6 and 0.077, 
respectively, and the same time variation and limit were used in the theoretical model. It can be 
seen that the omission of unsteady separation from the model limits its applicability, although the 
lift variation during the upstroke has been reproduced fairly well. 
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Figure 5. Comparison of normal lift on the NACA 23012 aerofoil when operating in the stall regime: 
K = 0.2, a = 13" + 10"sinwt 

(iii) Ramp motions 

The ramp tests consisted of rotating an aerofoil, about the 1/4 chord, at a constant angular 
velocity. The experimental tests incorporated angular acceleration up to the constant rate, whereas 
for the present calculation an 'ideal' ramp was used. Figure 6 compares the experimental" and 
theoretical results obtained from tests carried out on the NACA 0012 aerofil at reduced ramp rates 
c?c/2U, = 0.001 6 and 0.0065. The experimental Reynolds number and free-stream Mach number 
were 2-6 x lo6 and 0.3 respectively. This Mach number represents approximately the upper limit of 
applicability of incompressible theory without significant error being incurred. The theoretical 
tests were carried out using time steps AtU,/c=0.4363 for the test at cEc/2U, =0.0016 and 
AtU,/c = 0.3222 for the test at dc/2U, = 0.0065. 

For ease of comparison the experimental curves represent smoothed values of CN and as can be 
seen, the correlation with the predicted values is very good. Analogous to the sinusoidal cases 
mentioned earlier, the effect of increasing the reduced ramp rate is to modify the slopes of the lift 
curves, representing an increase in the lag of response. 

Figure 6. Resulting 

CN POTENTIAL EXPERIMENTAL 
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normal lift variations with incidence when ramp motions are applied to the N A C A  On12 
experiments: Re = 2.6 x lo6, M = 0.3 

aerofoil for 
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The initial small peak in the predicted lift for the test at &c/2U, = 00065 is due to the abrupt 
start up mentioned earlier. Also shown in Figure 6 are the predicted and experimental (Re = 
3 x lo6) static curves. The agreement in this case is much better than that obtained with the 
23012 and may be attributed to the observed insensitivity of this profile to the Reynolds number 
over the given range.I7 

COMPUTATIONAL DETAILS 

The decision on the number of panels that should be used to represent an aerofoil was based on 
compromise between accuracy on the one hand and time to perform the task required on the other. 
In general the size of panel to be used is inversely proportional to the surface curvature which 
means, for the aerofoils presented in this paper, concentration of panels around the leading-edge. 
This was accomplished by using the following analytic expression for the corner points: 

7I xi = 1 - cos Oi, 8, = -(i - l), i = 1,. . . , N / 2  + 1, N even N 

The y co-ordinates were then calculated from the available analytic functions for the respective 
NACA profiles. Tests using the potential flow program' with values of N up to 70 show that 
below N = 30, the results obtained deviate significantly from those obtained using between 30-70 
panels. 

Therefore, bearing in mind that the time taken to solve the matrix of co-effcients is proportional 
to N 3 ,  a 30-panel representation of the aerofoils was used for the tests presented herein. The 
reference potential point is initially located three chord lengths upstream from the leading-edge 
and the change in potential calculated across each of 30 equal length panels up to the aerofoil. The 
choice of what time step value AtU,/c to employ was obtained by balancing the computational 
time incurred with the accuracy of the results. Larger time steps were used in the lower frequency 
tests where the induced velocities were not as great. 

Only four wake iterations were carried out per time step since thereafter both the length and 
orientation of the extra trailing-edge panel showed little change. Note that the computational 
details of the coding of the equivalent Basu and Hancock model are given in Reference 19. 

CONCLUSIONS 

A successful method for calculating the unsteady, incompressible potential flow around an 
arbitrary aerofoil has been developed. The method uses a linear distribution of panel vorticity on the 
aerofoil surface and a new way ofshedding the necessary vorticity into the free stream in the form of 
discrete vortices. This particular feature yields a simpler algorithm than that of Reference 2. 

From the preceding discusion it may be concluded that the method predicts fully attached 
potential flow about an aerofoil, but i t  is inappropriate where significant viscous effects, e.g. 
marked Reynolds number dependence and separation, are present. 
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SYMBOL GLOSSARY 

influence coefficient 
angle of attack 
angular velocity 
wake vortex coefficient 
chord length 
normal lift coefficient 
moment coefficient 
lift coefficient 
pressure coefficient 
vorticity strength 
circulation 
length and orientation of extra trailing edge panel 
velocity potential 
reduced frequency 
free vortex strength 
panel length 
Mach number 
number of panels representing aerofoil 
unit normal vector 
pressure 
density 
Reynolds number 
time 
free stream velocity 
velocity components 
velocity of point fixed to aerofoil 
frequency of oscillation 
Cartesian co-ordinates 

Subscripts 

c control point 
i , j  index of aerofoil surface elements 
LE leading edge 
m time step counter 
s steady flow 
v wake vortex 
w extra trailing edge panel a quarter chord 
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